Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Stem Cell Reports ; 16(5): 1165-1181, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225410

ABSTRACT

SARS-CoV-2 infection is associated with lower blood oxygen levels, even in patients without hypoxia requiring hospitalization. This discordance illustrates the need for a more unifying explanation as to whether SARS-CoV-2 directly or indirectly affects erythropoiesis. Here, we show significantly enriched CD71+ erythroid precursors/progenitors in the blood circulation of COVID-19 patients. We found that these cells have distinctive immunosuppressive properties. In agreement, we observed a strong negative correlation between the frequency of these cells with T and B cell proportions in COVID-19 patients. The expansion of these CD71+ erythroid precursors/progenitors was negatively correlated with the hemoglobin levels. A subpopulation of abundant erythroid cells, CD45+ CD71+ cells, co-express ACE2, TMPRSS2, CD147, and CD26, and these can be infected with SARS-CoV-2. In turn, pre-treatment of erythroid cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2. This provides a novel insight into the impact of SARS-CoV-2 on erythropoiesis and hypoxia seen in COVID-19 patients.


Subject(s)
Adaptive Immunity/immunology , COVID-19/pathology , Erythroid Precursor Cells/virology , Erythropoiesis/physiology , Hemoglobins/analysis , Oxygen/blood , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , COVID-19/immunology , Dexamethasone/pharmacology , Erythroid Precursor Cells/immunology , Female , Humans , Lymphocyte Count , Male , Mice , Mice, Inbred BALB C , Middle Aged , SARS-CoV-2/immunology , Serine Endopeptidases/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Young Adult
2.
Stem Cell Reports ; 16(3): 428-436, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1082066

ABSTRACT

We document here that intensive care COVID-19 patients suffer a profound decline in hemoglobin levels but show an increase of circulating nucleated red cells, suggesting that SARS-CoV-2 infection either directly or indirectly induces stress erythropoiesis. We show that ACE2 expression peaks during erythropoiesis and renders erythroid progenitors vulnerable to infection by SARS-CoV-2. Early erythroid progenitors, defined as CD34-CD117+CD71+CD235a-, show the highest levels of ACE2 and constitute the primary target cell to be infected during erythropoiesis. SARS-CoV-2 causes the expansion of colony formation by erythroid progenitors and can be detected in these cells after 2 weeks of the initial infection. Our findings constitute the first report of SARS-CoV-2 infectivity in erythroid progenitor cells and can contribute to understanding both the clinical symptoms of severe COVID-19 patients and how the virus can spread through the circulation to produce local inflammation in tissues, including the bone marrow.


Subject(s)
COVID-19/virology , Erythroid Precursor Cells/virology , Erythropoiesis/physiology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Erythroid Precursor Cells/metabolism , Humans , Inflammation/metabolism , Inflammation/virology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL